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Abstract. Diffuse x-ray scattering lines observed from the layered material 
CJI(C,H,(OH)COO)~. (H20)% (DSC) reveal a considerable degree of short-range stacking 
order, indicating direct correlation between the fint few neighbouring layers. 

The data have been fitted to a ID, two-parameter Markovian growth model, equivalent 
to a ID Ising model involving nearest- and next-nearest-neighbour coupling. The disorder is 
caused by a combined effect of the one-dimensionaliv and the two coupling parameters, 
which are of the same sign. In the growth process the configuration of a given layer is 
influenced both by the previous layer configuration and the next previous one. Several 
samples from the same batch were studied, showing a considerable variation of the next- 
nearest-neighbour correlation parameters, indicating that the growth is very sensitive to the 
local extemal conditions (concentrations. impurities, temperature gradients, convection). 

1. Introduction 

Layered materials where the layer stacking sequence may vary, are often denoted 
polyt)pic, alludingtothe fact thatsuchmaterialsoccur inavarietyofforms. Well-known 
and much studied examples are Sic  and ZnS (Verma and Krishna 1966). In some cases 
the layer structure may be quite complicated, as in the material of the present study, yet 
the simplicity of the layer stacking is retained, effectively leaving only two energetically 
favourable nearest-layer configurations. Such cases are often describable by an king 
pseudo-spin picture (Yeomans 1988), where the various polytypescorrespond to various 
stable spin solutions depending on details of the interaction parameters. These inter- 
action parameters are thought to be fairly sensitive to the external conditions during the 
fabrication of the materials, leaving us with numerousvarietiesof superlattice structures, 
as for Sic. 

It isalsoexpected that undercertainconditionsfully or partially disordered materials 
may result, just as the king pseudo-spin system is disordered at sufficiently high tem- 
peratures or at low spatial dimensionalities. ID king systems lack long-range order at all 
T > 0. Since the layer sequence, once realised during a given crystal growth process, can 
hardly transform to other sequences, the disorder will be retained at all temperatures. 
Thus, the study of the layer stacking is in fact a study of the growth sequencing process. 
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For a completely random case the probability Pi for a given layer ’i’ is only given by a 
constant, a, directly related to the mole fractions of the two configurations. However, 
in more realistic cases it may depend on the configuration x i -  and xi - of the previous 
layers by 

Pi = a + p x , _  1 + yxi-2 + . . . 
This picture may be extended to neighbours at greater distances as well, even including 
non-linear terms. Mathematically the approach corresponds to systems of Markov 
chains, which, as shown in an extensive work by Welberry (1985), may indeed be 
transformed into Isingmodels. In  the present work weshall interpret thex-ray scattering 
from DSC in terms of layer-stacking disorder. The structure of DSC was determined by 
Jagner er a1 (1976). 

The experimental details of the present x-ray work and the data processing are 
described in the preceding paper (Tj0tta eta1 1991). 

2. The Markovian growth process 

A ID picture presupposes that each layer member is fully ordered, and that there are 
two ways of adding layers on top of each other. According to Welberry (1985) the 
probability P, for the choice of the ‘fh’ layer may be expressed by the discrete variable 
x,(x, = 1 for a ‘+ choice’, x, = 0 for a * -  choice’) 

P, = a + p x , - ,  + yx,-, + 6x,-1x,-2 + I ... (1) 
Welberry (1985) argues that the 6 term is not essential for the form of the correlation 
function, and we shall neglect it here. Since our x-ray data show evidence for next- 
nearest-neighbour correlation, (hut not necessarily for further neighbours) we shall 
keep only the three parameters a, p and y .  

Necessary formulation for the following discussion may he found in the Appendix. 
In a statistically random growth process no correlation will exist between neighbours, 
corresponding to p = y = 0 and CY = &. Such a case gives rise to a uniform intensity 
distribution in a diffraction experiment (except for structure-factor variation due to the 
objects taking part in the growth (molecules, layers etc)). A process where the choice 
of a given layer is influenced by the previous layer only, corresponds to p # 0, y = 0. 
Such a model may be qualitatively appropriate where the layer interaction is of short 
range, for instance through fittingof topological troughsand peakson the layersurfaces. 
In thiscase thecorrelation between distant layersistransmittedequally by each interven- 
ing layer, leading to a simple form 

c, =/3” (2 )  
for ‘ferromagnetic’ correlation 6 > 0. and peaks appear (All)  with maxima at integer 
indices I (‘mol type’). ‘Antiferromagnetic correlation’, p < 0, would correspond to a 
preference for unequal nearest-neighhour pairing (‘mo2 type’). In diffraction this 
case is revealed by peaking at half-integer I values. In either case a correlation range 
parameter E could be defined by 

(3) /3 = *e45 

and its value could be deduced from the peak width. In our case none of the samples 
could he described by aone-parameter fit only. 
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The other extreme case of f l =  0, y # 0 is less probable because it is hard to image a 
growth mechanism in which the nearest-neighbour plays no role while the next-nearest 
does. It is worthwhile to notice, though, that for such a case, D ,  = -D2  (see (A4)), and 
(for real D1,*) scattering peaks would occur with equal weight both at half-integer and 
integer values of 1. The coupling parameter, y, is positive for this case, leading to an 
enhanced probability of +()+ or -0- next-nearest-neighbour pair occurrence. It is 
this cell-doubling tendency which explains the corresponding 1 index halving. 

It turns out that our data can only be fitted by two non-equal Dt and D2 of opposite 
sign, corresponding to both p and yfinite. 

3. Experiments and data Etting 

Crystals were prepared at room temperature by adding 0.2 M CuSO, solution to the 
double volume of 0.2 M salicylic acid and 0.2 M NaOH. The solution was allowed to 
evaporate slowly over a few days, giving green crystals of size about 3 X 1 X 0.2 m, 
the shortest dimension corresponding to the layer normal axis c. 

Four different crystals were picked out at random from the precipitate and studied 
by x-ray diffraction at room temperature as described in the preceding paper (Tj@tta et 
a1 1991). 

Table1.Fitted parametersD,,D,withunoertainties,andderivedcouplingparameten~,B 
and y and near-neighbour correlation &unctions C. for the four samples, based on formulae 
given in the appendix 

Sample D, D2 (Y B Y c, c2 c3 

Two 0.12 -0.06 0.4665 0.06 0.007 0.060 0.011 0.0012 
20.03 t0.03 20.04 20.004 

Three 0.27 -0.14 0.4160 0.13 0.038 0.135 0.055 0.0123 

Four 0.30 -0.23 0.4305 0.07 0.069 0.075 0.074 0.0104 

Five 0.21 -0.12 0.4425 0.09 0.025 0.092 0.033 0.0053 

20.02 to.02 t0.03 tO.008 

-0.03 t0.03 + o m  +0.011 

LO.02 LO.02 k0.03 +0.005 

For each sample equation (All)  (with the corresponding (A4), (M), (A6) and 
(A3)) was fitted by the least squares method to the scattering in the 1 = 2.5-5.5 region. 
The fitted parameters and corresponding correlation values are shown in table 1, and 
the experimental and fitted calculated intensity profiles are shown in figure 1. The fits 
are quite good in the actual fitted regions for all four samples. In fact, most of the 
apparent bad fitting seen on figure 1 is due to insufficiently precise structure-factor 
functions and is unimportant for the derived parameters of table 1 (see the preceding 
paper for discussion of this point). One notices that for sample four, peaking is observed 
and also reproduced both at integer and half-integer 1-values. For samples three and five 
the fit is particularly good as far as peak shape and width are concerned, although there 
isasystematicdeviationinthel = 3.5regionforsamplesfourandfive. Thedatastatistin 
for sample two are somewhat inferior. 
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Figure 1. Observed (0) and calculated (t) intensities along I for [ITI] lor four different 
samples. The same, approximate layer structure factor is used lor all four cases, and fitting 
is performed in the regime I = 2.55.5. Corresponding correlation parameters are given in 
table 1. Notice the shift of origin for the lour samples (samples two to five fmm top to 
bottom). 

4. Discussion 

The values of p ,  y,  Ct, C2 and C3 of table 1 show that the parameters vary considerably 
from sample to sample. Thus the coupling parameters of the Markovian chain are 
sensitive to the external growth conditions, such as temperature and concentration 
gradients, and other local parameters that may vary across the reaction beaker and 
during the time of growth. It is noteworthy, however, that p (and C,) varies less than y 
(and C,) (p  - 0.09 e 0.04). In other words, the guidance that a given layer obtains in 
its deposition process from the previously deposited one is lesssusceptible to disturbance 
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Figure2. Aschematic representation ofthe interface between solid andsolution, indicating 
presalidification organization. The'molecules'are given ashape to allow visualizationof the 
alternative choice of layer orientation. 

(by ion flow, convection etc.) than the corresponding one from the layer already one 
step further down. In our opinion this indicates that there is a transition region between 
the solid phase and the solution phase consisting of a few fairly well organised layers 
under formation (see a schematic picture in figure 2). It is within this transition region 
that the next-nearest-neighbour coupling must play its role, and where it is also most 
easily perturbed by the local flow conditions. The exact nature of this coupling is of 
course not known. The nearest-neighbour interaction is presumably of a short-range 
van der Waals type and, therefore, is influenced less by the local conditions of the 
solution phase. It would he interesting to study samples grown under strictly controlled, 
vaned conditions to check the present conjecture. In our opinion it is striking that x-ray 
scattering studies on already-grown samples may be used to throw light on the growth 
mechanism. 

Appendix 

Welberry (1985) shows that for Markov chains the nth-neighbour correlation function 
C, is in general expressible by the form 

C,  = x c i  Df ('41) 
i 

(- 1 s D, < 1). For the case of only three parameters a, /3 and y,  one may show that ci = 
0, = 0 for j > 2, and that 

Q.2 = HB * m ('42) 

K =  BZ + 4 y .  ('43) 
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This solution implies that 

E .I Samuelsen et a1 

P = D 1 + 0 2  ('44) 

y = -DID? ('45) 
c1.2 = [1/(1 - v)l[1 - 2Y( l  + y)/W 5 Pm (A61 

('47) 

('48) 
('49) 

We notice that the parameter (Y does not enter these expressions. This parameter is 
determined by the average fraction m of + layers, 

and 

One may, furthermore, show that the two nearest-neighbour correlations are 

CI + c2 = 1. 

CI = PA1 - Y) 
c, = PI/ (  1 - y )  + y. 

(Y = m/(l - P - U). ('410) 
For a disordered stacking sequence m = 0.5. (For a fully ordered case, m = 1 and a third 
solution D = 1 applies.) 

In the preceding paper (Tjmtta era1 1990) we showed that the intensities of x-rays or 
neutrons scattered by the system are proportional to the Fourier transform of the 
correlation function CO, giving for our case 

with Q the scattering vector and c the growth direction repetition vector. The intensity 
is continuous in the growth direction index I ( Q . c  = 2x0, with maxima and minima 
when 1 is an integer or half-integer for cases of real D,,2 .  (Complex D1.2 may be shown 
to give rise to 'satellite peaks'.) 
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